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Interconnection Networks
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d Topology: the way switches and nodes are wired

(a) Crossbar (b) Star (c) Ring
A Routing
d  Buffering and flow control i T :jj
Router (switch), Radix of 2 (2 inputs, 2 outputs) m b_‘_¢

Abbreviation: Radix-ary
These routers are 2-ary

d) Tree (e) 2D Mesh (f) 2D Torus

Terminology: diameter, bisection bandwidth,
injection bandwidth, blocking & non-blocking,
radix,...

Metrics: cost, latency, contention, energy,
bandwidth,...

Indirect

Computer Architecture Lecture 23. Onur Mutlu. ETH Zurich. 2018



Interconnection Networks

A Topology

d Routing: how does a message get from source to destination
A Buffering and flow control

Mechanism

1. Arithmetic. Eg. dimension order routing
2. Source based. Route determined by source.
3. Table lookup based. Route determined along transmission

Algorithm

1. Deterministic
2. Oblivious
3. Adaptive



Interconnection Networks

A Topology: the way switches and nodes are wired

A Routing: how does a message get from source to destination
d Buffering and flow control

3
3

Packet: a message is broken into multiple packets

Flit: a packet may itself be broken into flits

3
3

Flits do not contain additional headers

Flits are ordered and follow the same path

Message
Packet Packet Packet
A Data Data Data 7 Head
TallEle o o Flit Flit Flit

Interconnection network performance of multi-core

cluster architectures. Journal of Computers. 2015



Interconnection Networks

A Topology: the way switches and nodes are wired
A Routing: how does a message get from source to destination
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HPC Network: Dragonfly O Ot
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Efficient Routing Mechanisms for Dragonfly Networks. ICPP 2013

A network topology designed for large scale compute clusters

Examples: Frontier, Aurora, LUMI, Perlmutter



HPC Network

Fat-Tree Slimfly Dragonfly 3D Torus

Descripti IR
escription 7 N\
7\ 7\

I\ I\ I\ N
Diameter 2 logl1(N) 2 3,4 3 (N'3)/2
Bisection n/2, maximal Near maximal Very high 2 N?3
bandwidth
Pros Full bandwidth Optical latency, fewer Scale well, fewer Simple cabling,

switches and cables switches and cables simple routing

Cons Expensive, high Difficult cabling Require smart Poor for global

radix requirement routing, congestion communication,

does not scale well




Interconnection Networks

Packet: a message is broken into multiple packets
Flit: a packet may itself be broken into flits

A Flits do not contain additional headers
A Flits are ordered and follow the same path

For a flit to jump to the next router, it must acquire three resources:

1. A free virtual channel on its intended hop
2. Free buffer entries for the virtual channel
3. A free cycle on the physical channel



Interconnection Networks

A Deadlock

A Caused by circular dependencies on resources

(1 B wants to talk to D
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Interconnection Networks

A Deadlock
A Caused by circular dependencies on resources
A Avoidance

1 Dimension-order routing or turn restriction
A Use virtual channels
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Interconnection Networks

A Deadlock
A Caused by circular dependencies on resources
A Avoidance

A Dimension-order routing or turn restriction
[  Use virtual channels
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Switch-Less Dragonfly on Wafers: A Scalable
Interconnection Architecture based on Wafer-Scale
Integration

Yinxiao Feng and Kaisheng Ma, Tsinghua University, SC24
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Motivation

A Physical channel bandwidth (400G/800G) limits per-chip injection bandwidth

A High-radix switches are expensive, introducing latency and energy overhead
A 64-port 400G Infiniband switch cost $40,000, 200ns port-to-port latency, 1.7KW

A Modern computing chips can provide abundant I/O and switching bandwidth

14



Wafers and chips

A Traditionally, a chip is limited by the

lithographic reticle area (26mm x

33mm) on a monolithic die

A Integrated-Fan-Out-System-on-Wafer

(InNFO-SoW)
A Eliminates using substrates and PCBs
A Achieves higher
integration/interconnection density and
energy efficiency
A 2D-mesh on wafer interconnection
A Difficult to scale out

e I/o I/0

RDL / Interposer
(Interconnections)

Silicon Chips Chip1 | Chip 2

Thermal Module Thermal Module

Fig. 1. Profile of the INFO-SoW integration technology. Connectors and power
modules are solder-joined to the InFO wafer [17].

Tesla DOJO, 25 D1 Cerebras WSE-2, 850,000 cores
dies for FSD training

https://digitalassets.tesla.com/tesla-contents/image/upload/tesla-dojo-technology.pdf 15
https://wecftech.com/cerebras-unveils-7nm-wafe-scale-engine-2-largest-ai-chip-ever-built/



https://digitalassets.tesla.com/tesla-contents/image/upload/tesla-dojo-technology.pdf
https://wccftech.com/cerebras-unveils-7nm-wafe-scale-engine-2-largest-ai-chip-ever-built/

Wafer-scale integration

A Ultra-high on/off-wafer bandwidth

Category Switching Chip Computing Chip
" : NVSwitch|Tofino2|Rosetta| H100 |[EPYC (DOJOD1
Specification [31] [32] | [33] |14, 34]|[35, 36]| [15]
Physical Lanes 128 256 256 36 128 576
Data-rate (Gbps) 100 50 50 100 32 112
Throughput (Tb/s)| 12.8 12.8 12.8 3.6 4 63

A Comparable to high-end switches
A Challenges

2

2D-mesh topology is not scalable

(A  Bandwidth difference between on-wafer and off-wafer

2

Interconnecting 2D-mesh introduces routing problems, requiring joint optimization on-chip and off-chip

16



From switch-based to switch-less

Core contribution:

Avoid using costly high-radix switches

Improve injection/local throughput and maintain global throughput
Scale out 2D-mesh-on-wafer to network-of-wafers

Iy By My

Minimal/non-minimal routing algorithm and a novel labeling and interconnection
methods to reduce the virtual-channel number

A Only one additional virtual channel against traditional Dragonfly is needed

17



Switch-less Dragonfly architecture
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Switch-less Dragonfly architecture
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Switch-less Dragonfly architecture

A Scalability
A 2 C-groups/wafer, 4 wafers, 2x2 chiplets/C-group, 6 interfaces/chiplet — 1k chiplet

A Throughput
A Requirement: global / intra-group injection bandwidth = 1/2
A Could achieve higher local throughput by having multiple physical links
A However, the mesh could introduce contention between intra-C-group and inter-C-group traffic

Injection throughput Switch-based Dragonfly | Switch-less Dragonfly
(flits/cycle/chip)

Global 1 1

Intra-group 1 2

Intra-C-group 2 3




Switch-less Dragonfly architecture

1 Diameter

A Short distance hops will not incur too much latency (~1ns)

A Collective communication
A 2D algorithm could be used to reduce latency compared to ring

switch)

# hops Switch-based Dragonfly | Switch-less Dragonfly
Global 1 1

Intra-group 2 2

Intra-C-group 2 (hops between node to | 2(m-1) * 4

21



Interconnection and routing design

A Switch-based Dragonfly

A Deadlock-free minimal routing: 2 virtual channels
A Non-minimal routing: 3 virtual channels

A Switchless Dragonfly

A Minimal routing:
A 4 virtual channels
A 3 inter-C-group routing steps
A 4 intra-C-group routing steps

A Non-minimal routing:
A 6 virtual channels
A 5 inter-C-group routing steps
A 6 intra-C-group routing steps

VCH1 VC2_
P S 7~ N
7 N 7 N G
VCO | Vet _| VC2 d
] [n ) [
VCOo
VC1
G \ Gy . minimal route

non-minimal route

Technology-Driven, Highly-Scalable
Dragonfly Topology. ISCA 2008
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Interconnection and routing design

O Switch-based Dragonfly

A  Deadlock-free minimal routing: 2 virtual channels

A Non-minimal routing: 3 virtual channels

O Switchless Dragonfly
L  VC can be reduced through up/down routing
(dimension-order)

A Minimal routing:

Q
a
a

4 virtual channels — 3
3 inter-C-group routing steps
4 intra-C-group routing steps

A Non-minimal routing:

Q
a
a

6 virtual channels — 4
5 inter-C-group routing steps
6 intra-C-group routing steps
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Evaluation method

A Layout: PHYs, chiplets, IO connectors

A Intra-C-group short-reach
A 128 lanes of UClIe per channel
A 4096 Gbps/port
A 6 channels per edge
A Bisection bandwidth: 12TBps
A Oft-C-group long-reach
A 8lanes of 112G SerDes
d 896 Gbps/port
A 1536 ports per C-group

A CNSim simulation

A Workloads

(A Unicast traffic
(A Adversarial
A Collective ring algorithm

(~ 2mm X 3mm)

Off-Wafer 1/0
Bonding pad / connector / socket
Pitch > 0.3mm
(e.g., optical module)

SR-LR conversion module

24



Evaluation results

Intra-C-group, 4 chips

Intra-W-group, 32 chips

Global, 1312 chips

Average Latency (cycles)
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(d) Local: Bit-reverse

(e) Local: Bit-shuffle

(f) Local: Bit-transpose
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(a) Local (b) Global
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Discussion

A scalable wafer-based interconnection architecture

Removes costly high-radix switches while improving local bandwidth
Proposes deadlock-free minimal/non-minimal routing

Shows a wafer-scale layout

[y Ny Ep N

How would switch-less Dragonfly handle failure?

Will boundary chiplet experience be overloaded due to inter-wafer communication?
Do you think the evaluation (injection bandwidth and energy) is thorough?

What are the potential limits of 2D-mesh bisection bandwidth at large scales?

Why is reducing the number of virtual channels so important?
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